Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Elife ; 122024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446501

RESUMO

Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin ß4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Humanos , Fatores de Despolimerização de Actina/genética , Citoesqueleto de Actina , Miosinas , Mutação
2.
Commun Biol ; 6(1): 1056, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853189

RESUMO

Neuroligins are transmembrane cell adhesion proteins well-known for their genetic links to autism spectrum disorders. Neuroligins can function by regulating the actin cytoskeleton, however the factors and mechanisms involved are still largely unknown. Here, using the Drosophila neuromuscular junction as a model, we reveal that F-Actin assembly at the Drosophila NMJ is controlled through Cofilin signaling mediated by an interaction between DNlg2 and RACK1, factors not previously known to work together. The deletion of DNlg2 displays disrupted RACK1-Cofilin signaling pathway with diminished actin cytoskeleton proteo-stasis at the terminal of the NMJ, aberrant NMJ structure, reduced synaptic transmission, and abnormal locomotion at the third-instar larval stage. Overexpression of wildtype and activated Cofilin in muscles are sufficient to rescue the morphological and physiological defects in dnlg2 mutants, while inactivated Cofilin is not. Since the DNlg2 paralog DNlg1 is known to regulate F-actin assembly mainly via a specific interaction with WAVE complex, our present work suggests that the orchestration of F-actin by Neuroligins is a diverse and complex process critical for neural connectivity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transdução de Sinais/fisiologia , Receptores de Quinase C Ativada/genética
3.
J Biol Chem ; 299(12): 105367, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863260

RESUMO

Cyclase-associated protein (CAP) has emerged as a central player in cellular actin turnover, but its molecular mechanisms of action are not yet fully understood. Recent studies revealed that the N terminus of CAP interacts with the pointed ends of actin filaments to accelerate depolymerization in conjunction with cofilin. Here, we use in vitro microfluidics-assisted TIRF microscopy to show that the C terminus of CAP promotes depolymerization at the opposite (barbed) ends of actin filaments. In the absence of actin monomers, full-length mouse CAP1 and C-terminal halves of CAP1 (C-CAP1) and CAP2 (C-CAP2) accelerate barbed end depolymerization. Using mutagenesis and structural modeling, we show that these activities are mediated by the WH2 and CARP domains of CAP. In addition, we observe that CAP collaborates with profilin to accelerate barbed end depolymerization and that these effects depend on their direct interaction, providing the first known example of CAP-profilin collaborative effects in regulating actin. In the presence of actin monomers, CAP1 attenuates barbed end growth and promotes formin dissociation. Overall, these findings demonstrate that CAP uses distinct domains and mechanisms to interact with opposite ends of actin filaments and drive turnover. Further, they contribute to the emerging view of actin barbed ends as sites of dynamic molecular regulation, where numerous proteins compete and cooperate with each other to tune polymer dynamics, similar to the rich complexity seen at microtubule ends.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas do Citoesqueleto , Forminas , Proteínas de Membrana , Animais , Camundongos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Forminas/metabolismo , Profilinas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Polimerização , Domínios Proteicos/genética , Modelos Moleculares , Estrutura Terciária de Proteína
4.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610419

RESUMO

The actin cytoskeleton is one of the targets of the pH gradient in tip-growing cells, but how cytosolic pH regulates the actin cytoskeleton remains largely unknown. We here demonstrate that Arabidopsis ADF7 and ADF10 function optimally at different pH levels when disassembling actin filaments. This differential pH sensitivity allows ADF7 and ADF10 to respond to the cytosolic pH gradient to regulate actin dynamics in pollen tubes. ADF7 is an unusual actin-depolymerizing factor with a low optimum pH in in vitro actin depolymerization assays. ADF7 plays a dominant role in promoting actin turnover at the pollen tube apex. ADF10 has a typically high optimum pH in in vitro assays and plays a dominant role in regulating the turnover and organization of subapical actin filaments. Thus, functional specification and cooperation of ADF isovariants with different pH sensitivities enable the coordination of the actin cytoskeleton with the cytosolic pH gradient to support pollen tube growth.


Assuntos
Fatores de Despolimerização de Actina , Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Actinas , Arabidopsis/genética , Diferenciação Celular , Proliferação de Células , Tubo Polínico/genética , Força Próton-Motriz , Fatores de Despolimerização de Actina/genética , Proteínas de Arabidopsis/genética
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982748

RESUMO

Actin filaments are essential for plant adaptation to high temperatures. However, the molecular mechanisms of actin filaments in plant thermal adaptation remain unclear. Here, we found that the expression of Arabidopsis actin depolymerization factor 1 (AtADF1) was repressed by high temperatures. Compared with wild-type seedlings (WT), the mutation of AtADF1 and the overexpression of AtADF1 led to promoted and inhibited plant growth under high temperature conditions, respectively. Further, high temperatures induced the stability of actin filaments in plants. Compared with WT, Atadf1-1 mutant seedlings showed more stability of actin filaments under normal and high temperature conditions, while the AtADF1 overexpression seedlings showed the opposite results. Additionally, AtMYB30 directly bound to the promoter of AtADF1 at a known AtMYB30 binding site, AACAAAC, and promoted the transcription of AtADF1 under high temperature treatments. Genetic analysis further indicated that AtMYB30 regulated AtADF1 under high temperature treatments. Chinese cabbage ADF1 (BrADF1) was highly homologous with AtADF1. The expression of BrADF1 was inhibited by high temperatures. BrADF1 overexpression inhibited plant growth and reduced the percentage of actin cable and the average length of actin filaments in Arabidopsis, which were similar to those of AtADF1 overexpression seedlings. AtADF1 and BrADF1 also affected the expression of some key heat response genes. In conclusion, our results indicate that ADF1 plays an important role in plant thermal adaptation by blocking the high-temperature-induced stability of actin filaments and is directly regulated by MYB30.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Hum Mol Genet ; 32(10): 1660-1672, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36637427

RESUMO

Accumulating toxic protein assemblies, including Aß and tau, and dysfunctional mitochondria are associated with synaptic and neuronal loss in Alzheimer's disease (AD). Such accumulations are thought to be owing to clearance defects in the autophagy-lysosome pathway. Mitochondrial dysfunction is evident in AD brains and animal models at multiple levels, such as mitochondrial genomic mutations, disrupted bioenergetics, deregulated mitochondrial dynamics and impaired clearance of damaged mitochondria (mitophagy). Slingshot homolog-1 (SSH1) is a phosphatase activated by oxidative stress, high intracellular levels of Ca2+ and Aß42 oligomers (Aß42O), known for its function to dephosphorylate/activate cofilin through the N-terminal region. SSH1-mediated cofilin dephosphorylation results in Ab42O-induced severing of F-actin and translocation of cofilin to mitochondria, which promotes mitochondria-mediated apoptosis, synaptic loss and synaptic deficits. On the other hand, SSH1-mediated dephosphorylation/deactivation of the autophagy-cargo receptor p62 (SQSTM1), through its C-terminal region, inhibits p62 autophagy flux. However, the interplay between these two different activities of SSH1 in Aß42O-induced mitochondrial toxicity remains unclear. In this study, we assessed the role of endogenous SSH1 and different regions of SSH1 in regulating mitochondrial health, mitochondrial respiration, clearance of damaged mitochondria and synaptic integrity in vitro and in vivo. Our results indicate that SSH1 suppresses mitochondrial health and respiration through the cofilin-binding N-terminal region, whereas SSH1 impairs mitophagy through a newly identified ~ 100 residue p62-binding domain in the C-terminal region. These results indicate that both N-terminal and C-terminal regions negatively impact mitochondria by distinct and independent modalities to amplify mitochondrial abnormalities, making SSH1 an excellent target to mitigate AD pathogenesis.


Assuntos
Fatores de Despolimerização de Actina , Doença de Alzheimer , Animais , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo
7.
Nat Commun ; 13(1): 7886, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550158

RESUMO

Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.


Assuntos
Cardiomiopatia Dilatada , Masculino , Camundongos , Animais , Cardiomiopatia Dilatada/metabolismo , Actinas/metabolismo , Conexina 43/genética , Tubulina (Proteína)/genética , Fator de Resposta Sérica/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Knockout , Proteínas de Filamentos Intermediários/genética , Mutação , Fatores de Despolimerização de Actina/genética
8.
Nat Commun ; 13(1): 5728, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175399

RESUMO

F-actin dynamics is crucial for many fundamental properties of cancer cells, from cell-substrate adhesion to migration, invasion and metastasis. However, the regulatory mechanisms of actin dynamics are still incompletely understood. In this study, we demonstrate the function of a protein named TM9SF4 in regulating actin dynamics and controlling cancer cell motility and metastasis. We show that an N-terminal fragment (NTF) cleaved from TM9SF4 can directly bind to F-actin to induce actin oxidation at Cys374, consequently enhancing cofilin-mediated F-actin disassembly. Knockdown of TM9SF4 reduces cell migration and invasion in ovarian cancer cells A2780, SKOV3 and several high grade serous ovarian cancer lines (HGSOCs). In vivo, knockdown of TM9SF4 completely abolishes the tumor growth and metastasis in athymic nude mice. These data provide mechanistic insights into TM9SF4-mediated regulation of actin dynamics in ovarian cancer cells.


Assuntos
Actinas , Neoplasias Ovarianas , Fatores de Despolimerização de Actina/genética , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Membrana , Camundongos , Camundongos Nus , Neoplasias Ovarianas/genética
9.
J Cell Biol ; 221(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35657370

RESUMO

Actin filament dynamics must be precisely controlled in cells to execute behaviors such as vesicular trafficking, cytokinesis, and migration. Coronins are conserved actin-binding proteins that regulate several actin-dependent subcellular processes. Here, we describe a new conditional knockout cell line for two ubiquitous coronins, Coro1B and Coro1C. These coronins, which strongly co-localize with Arp2/3-branched actin, require Arp2/3 activity for proper subcellular localization. Coronin null cells have altered lamellipodial protrusion dynamics due to increased branched actin density and reduced actin turnover within lamellipodia, leading to defective haptotaxis. Surprisingly, excessive cofilin accumulates in coronin null lamellipodia, a result that is inconsistent with the current models of coronin-cofilin functional interaction. However, consistent with coronins playing a pro-cofilin role, coronin null cells have increased F-actin levels. Lastly, we demonstrate that the loss of coronins increases accompanied by an increase in cellular contractility. Together, our observations reveal that coronins are critical for proper turnover of branched actin networks and that decreased actin turnover leads to increased cellular contractility.


Assuntos
Actinas , Proteínas dos Microfilamentos , Pseudópodes , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Movimento Celular , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo
10.
Genes (Basel) ; 13(5)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35627108

RESUMO

As the quality of beef products has received increasing attention, it is essential to explore the underlying transcriptional and epigenetic mechanisms of meat traits. Our project uses Qinchuan cattle as the research subject. First, we examined the spatiotemporal expression pattern of the CFL1 gene in a panel of fetal bovine, calf, and adult cattle samples. Then, we performed DNA methylation experiments of CFL1 on myogenesis and muscle maturation using the BSP amplification and COBRA sequencing techniques and found that high DNA methylation levels showed low expression levels. Next, we performed an assay between bta-miR-182 and the CFL1 gene and demonstrated that miR-182 could promote bovine primary myoblast differentiation by negatively regulated the expression of CFL1. Finally, we constructed an adenovirus overexpression and interference vector and found that CFL1 could suppress the differentiation of bovine primary myoblasts. In summary, our experiment comprehensively analyzes the epigenetic regulation mechanisms of the CFL1 gene in the development and differentiation of bovine primary myoblasts. This has far-reaching significance for improving the meat production and meat quality of Qinchuan cattle. This can provide reliable data support and a theoretical research basis for the rapid and efficient breeding selection of local yellow cattle and the genetic improvement of meat quality.


Assuntos
Epigênese Genética , MicroRNAs , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Bovinos , Epigênese Genética/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo
11.
Eur J Cell Biol ; 101(2): 151216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35313204

RESUMO

Heterozygous dominant mutations in the ubiquitously produced cytoskeletal ß-actin isoform lead to a broad range of human disease phenotypes, which are currently classified as three distinct clinical entities termed Baraitser-Winter-Cerebrofrontofacial syndrome (BWCFF), ACTB-associated pleiotropic malformation syndrome with intellectual disability (ACTB-PMSID), and ACTB-associated syndromic thrombocytopenia (ACTB-AST). The latter two are distinguishable from BWCFF by the presence of milder craniofacial features and less pronounced developmental abnormalities, or the absence of craniofacial features in combination with a characteristic thrombocytopenia with platelet anisotropy. Production and correct function of ß-actin is required for multiple essential processes in all types of cells. Directed cell migration, cytokinesis and morphogenesis are amongst the functions that are supported by ß-actin. Here we report the recombinant production and biochemical characterization of the ACTB-AST mutant p.S368fs, resulting in an altered sequence in the C-terminal region of ß-actin that includes a replacement of the last 8 residues and an elongation of the molecule by 4 residues. The mutation affects a region important for actin polymerization and actin-profilin interaction. Accordingly, we measured markedly reduced rates of nucleation and polymerization during spontaneous actin assembly and lower affinity of p.S368fs for human profilin-1. The reduced affinity is also reflected in the lower propensity of profilin-1 to extend the nucleation phase of p.S368fs. While localized in close proximity to actin-cofilin and actin-myosin interfaces, we determined only minor effects of the mutation on the interaction of mutant filaments with cofilin and myosin family members. However, allosteric effects on sites distant from the mutation manifest themselves in a 7.9 °C reduction in thermal denaturation temperature, a 2-fold increase in the observed IC50 for DNase-I, and changes in nucleotide exchange kinetics. Our results support a disease mechanism involving impaired actin dynamics and function through disruption of actin-profilin interactions and further exacerbated by allosteric perturbations.


Assuntos
Actinas , Mutação da Fase de Leitura , Síndrome , Trombocitopenia , Fatores de Despolimerização de Actina/genética , Actinas/genética , Anormalidades Craniofaciais , Epilepsia , Facies , Humanos , Deficiência Intelectual , Lisencefalia , Mutação , Miosinas/genética , Profilinas/genética , Trombocitopenia/genética
12.
Cells ; 10(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944075

RESUMO

Protein aggregates of cofilin and actin have been found in neurons under oxygen-glucose deprivation. However, the regulatory mechanism behind the expression of Cfl1 during oxygen-glucose deprivation remains unclear. Here, we found that heterogeneous nuclear ribonucleoproteins (hnRNP) Q and hnRNP A1 regulate the translation of Cfl1 mRNA, and formation of cofilin-actin aggregates. The interaction between hnRNP A1 and Cfl1 mRNA was interrupted by hnRNP Q under normal conditions, while the changes in the expression and localization of hnRNP Q and hnRNP A1 increased such interaction, as did the translation of Cfl1 mRNA under oxygen-glucose deprived conditions. These findings reveal a new translational regulatory mechanism of Cfl1 mRNA in hippocampal neurons under oxygen-glucose deprivation.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Glucose/deficiência , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Oxigênio/metabolismo , Biossíntese de Proteínas , Fatores de Despolimerização de Actina/genética , Animais , Isquemia Encefálica/patologia , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34841429

RESUMO

How multiple actin networks coexist in a common cytoplasm while competing for a shared pool of monomers is still an ongoing question. This is exemplified by meiotic maturation in the mouse oocyte, which relies on the dynamic remodeling of distinct cortical and cytoplasmic F-actin networks. Here, we show that the conserved actin-depolymerizing factor cofilin is activated in a switch-like manner upon meiosis resumption from prophase arrest. Interfering with cofilin activation during maturation resulted in widespread elongation of microvilli, while cytoplasmic F-actin was depleted, leading to defects in spindle migration and polar body extrusion. In contrast, cofilin inactivation in metaphase II-arrested oocytes resulted in a shutdown of F-actin dynamics, along with a dramatic overgrowth of the polarized actin cap. However, inhibition of the Arp2/3 complex to promote actin cap disassembly elicited ectopic microvilli outgrowth in the polarized cortex. These data establish cofilin as a key player in actin network homeostasis in oocytes and reveal that microvilli can act as a sink for monomers upon disassembly of a competing network.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Fatores de Despolimerização de Actina/genética , Animais , Homeostase , Meiose , Camundongos , Microvilosidades , Oócitos , Fuso Acromático
14.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639067

RESUMO

All eukaryotic cells are composed of the cytoskeleton, which plays crucial roles in coordinating diverse cellular functions such as cell division, morphology, migration, macromolecular stabilization, and protein trafficking. The cytoskeleton consists of microtubules, intermediate filaments, and actin filaments. Cofilin, an actin-depolymerizing protein, is indispensable for regulating actin dynamics in the central nervous system (CNS) development and function. Cofilin activities are spatiotemporally orchestrated by numerous extra- and intra-cellular factors. Phosphorylation at Ser-3 by kinases attenuate cofilin's actin-binding activity. In contrast, dephosphorylation at Ser-3 enhances cofilin-induced actin depolymerization. Cofilin functions are also modulated by various binding partners or reactive oxygen species. Although the mechanism of cofilin-mediated actin dynamics has been known for decades, recent research works are unveiling the profound impacts of cofilin dysregulation in neurodegenerative pathophysiology. For instance, oxidative stress-induced increase in cofilin dephosphorylation is linked to the accumulation of tau tangles and amyloid-beta plaques in Alzheimer's disease. In Parkinson's disease, cofilin activation by silencing its upstream kinases increases α-synuclein-fibril entry into the cell. This review describes the molecular mechanism of cofilin-mediated actin dynamics and provides an overview of cofilin's importance in CNS physiology and pathophysiology.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Sistema Nervoso Central/fisiologia , Suscetibilidade a Doenças , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Transdução de Sinais , Fatores de Despolimerização de Actina/genética , Animais , Axônios/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Família Multigênica , Degeneração Neural/patologia , Regeneração Nervosa , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Plasticidade Neuronal , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681906

RESUMO

The most common ventricular premature contractions (VPCs) originate from the right ventricular outflow tract (RVOT), but the molecular mechanisms of altered cytoskeletons of VPC-induced cardiomyopathy remain unexplored. We created a RVOT bigeminy VPC pig model (n = 6 in each group). Echocardiography was performed. The histopathological alternations in the LV myocardium were analyzed, and next generation sequencing (NGS) and functional enrichment analyses were employed to identify the differentially expressed genes (DEGs) responsible for the histopathological alternations. Finally, a cell silencing model was used to confirm the key regulatory gene and pathway. VPC pigs had increased LV diameters in the 6-month follow-up period. A histological study showed more actin cytoskeleton disorganization and actin accumulation over intercalated disc, Z-line arrangement disarray, increased ß-catenin expression, and cardiomyocyte enlargement in the LV myocardium of the VPC pigs compared to the control pigs. The NGS study showed actin cytoskeleton signaling, RhoGDI signaling, and signaling by Rho Family GTPases and ILK Signaling presented z-scores with same activation states. The expressions of Rac family small GTPase 2 (Rac2), the p-cofilin/cofilin ratio, and the F-actin/G-actin ratio were downregulated in the VPC group compared to the control group. Moreover, the intensity and number of actin filaments per cardiomyocyte were significantly decreased by Rac2 siRNA in the cell silencing model. Therefore, the Rac2/cofilin pathway was found to play a crucial role in the sarcomere morphology and Z-line arrangement disarray induced by RVOT bigeminy VPCs.


Assuntos
Citoesqueleto de Actina/patologia , Fatores de Despolimerização de Actina/metabolismo , Arritmias Cardíacas/patologia , Ventrículos do Coração/patologia , Sarcômeros/patologia , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Animais , Arritmias Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Sarcômeros/metabolismo , Suínos , Porco Miniatura , Proteínas rac de Ligação ao GTP/genética
16.
Mol Plant Pathol ; 22(12): 1656-1667, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34515397

RESUMO

Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.


Assuntos
Fatores de Despolimerização de Actina/genética , Resistência à Doença , Gossypium , Doenças das Plantas/microbiologia , Verticillium , Actinas , Ascomicetos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/patogenicidade
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1558-1566, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34568889

RESUMO

Tumor acidic microenvironment is the main feature of many solid tumors. As a part of the tumor microenvironment, it has a profound impact on the occurrence and development of tumors. However, the research on how tumor cells sense the changes of the external microenvironment and how the intracellular subcellular structures transmit the signals from extracellular to intracellular is unclear. In this study, we identify that the acidic microenvironment enhances cancer cell motility, and the expression of membrane-anchored membrane type 1-matrix metalloproteinase is also associated with cell motility, which indicates more degradation of the ECM under the acidic microenvironment. Moreover, the expression of cofilin is low in the acidic microenvironment, and the F-actin filaments are distributed more along the cells. The cytoskeletal F-actin changes are consistent with the potential of a high-invasive phenotype. Further study reveals the upstream control of the signal transductions from extracellular to intracellular, that is, the integrin ß1 functions to trigger the biological responses under the acidic microenvironment. Our results demonstrate that the acidic microenvironment enhances cancer cell motility through the integrin ß1/cofilin/F-actin signal axis. This study clearly shows the scheme of the signal transmissions from extracellular to intracellular and further reveals the cytoskeletal roles for the contributions of cancer cell motility under acidic microenvironment, which provides new targets for cancer intervention from the biochemical and biophysical perspectives.


Assuntos
Fatores de Despolimerização de Actina/genética , Actinas/genética , Movimento Celular/genética , Integrina beta1/genética , Metaloproteinase 1 da Matriz/genética , Células A549 , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Integrina beta1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 1 da Matriz/metabolismo , Modelos Biológicos , Transdução de Sinais , Microambiente Tumoral/genética
18.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445542

RESUMO

Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Permeabilidade da Membrana Celular , Endoglina/metabolismo , Células Endoteliais/patologia , Inflamação/patologia , Quinases Lim/metabolismo , Neovascularização Patológica/patologia , Fatores de Despolimerização de Actina/genética , Animais , Endoglina/genética , Células Endoteliais/metabolismo , Inflamação/genética , Inflamação/metabolismo , Quinases Lim/genética , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
19.
J Plant Res ; 134(6): 1291-1300, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34282484

RESUMO

Endoreplication is a type of cell cycle where genome replication occurs without mitosis. An increase of ploidy level by endoreplication is often associated with cell enlargement and an enhanced plant growth. Here we report Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs (ADFs) and vegetative ACTIN2/8 as novel regulators of endoreplication. A. thaliana has 11 ADF members that are divided into 4 subclasses. Subclass I consists of four members, ADF1, -2, -3, and -4, all of which constitutively express in various tissues. We found that both adf4 knockout mutant and transgenic plants in which expressions of all of four subclass I ADFs are suppressed (ADF1-4Ri) showed an increased leaf area of mature first leaves, which was associated with a significant increase of epidermal pavement cell area. Ploidy analysis revealed that the ploidy level was significantly increased in mature leaves of ADF1-4Ri. The increased ploidy was also observed in roots of adf4 and ADF1-4Ri, as well as in dark-grown hypocotyls of adf4. Furthermore, double mutants of vegetative ACT2 and ACT8 (act2/8) exhibited an increase of leaf area and ploidy level in mature leaves. Therefore, actin-relating pathway could regulate endoreplication. The possible mechanisms that actin and ADFs regulate endoreplication are discussed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Hipocótilo
20.
Plant Cell Physiol ; 62(9): 1387-1395, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34086948

RESUMO

Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Despolimerização de Actina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...